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Combination of a fourth-order Padé compact finite difference discretization in space and a fourth-
order Runge–Kutta time stepping scheme is shown to yield an effective method for solving highly
nonlinear standing waves in a thermoviscous medium. This accurate and fast-solver numerical
scheme can predict the pressure, particle velocity, and density along the standing wave resonator
filled with a thermoviscous fluid from linear to strongly nonlinear levels of the excitation amplitude.
The stability analysis is performed to determine the stability region of the scheme. Beside the fourth-
order accuracy in both time and space, another advantage of the given numerical scheme is that
no additional attenuation is required to get numerical stability. As it is well known, the results
show that the pressure and particle velocity waveforms for highly nonlinear waves are significantly
different from that of the linear waves, in both time and space. For highly nonlinear waves, the
results also indicate the presence of a wavefront that travels along the resonator with very high
pressure and velocity gradients. Two gases, air and CO2, are considered. It is observed that the
slopes of the traveling velocity and pressure gradients are higher for CO2 than those for air. For
highly nonlinear waves, the results also indicate the higher asymmetry in pressure for CO2 than
that for air.

Keywords: Nonlinear standing waves; compact finite difference method; Runge–Kutta method; sta-
bility analysis.

1. Introduction

Strongly nonlinear acoustics is devoted to waves of amplitude high enough that the finite-
amplitude assumption, |ρ′| � ρ0, |p′| � p0, is violated (ρ and p are density and pressure,
respectively, which can be written as ρ = ρ0 + ρ′ and p = p0 + p′, where prime denotes
perturbation in the given parameter and subscript “0” represents the static value). When
nonlinear terms in the conservation equations are retained, great mathematical difficulty
is encountered and the analytical solution even in special cases is very difficult or nearly
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impossible. Therefore, numerical approaches are frequently used. Ilinskii et al.1 developed
a one-dimensional model to analyze nonlinear standing waves in an acoustical resonator. In
their model, the entire resonator was driven harmonically with an acceleration of constant
amplitude. They only included the attenuation associated with viscosity and solved the
model equation in the frequency domain. A numerical model for nonlinear standing waves,
based on a second-order wave equation written in Lagrangian coordinates, was presented by
Vanhille and Campos-Pozuelo.2 They presented a numerical formulation to model the stand-
ing acoustic wave of finite but moderate amplitude based on the finite difference method
(FDM). Later, they extended their methods to two-dimensional nonlinear resonators.3 In
their model, losses due to the thermal conductivity of the fluid and walls of the tube were
not taken into account. They also compared finite difference and finite volume methods
(FVM) for nonlinear standing ultrasonic waves in fluid media and found reasonable agree-
ment between the two schemes.4 Finite element method (FEM) has been used for the study
of nonlinear standing waves in rigid-walled air-filled and water-filled tubes.5 The comparison
between the results of different methods developed in these studies shows that, although
FEM and FVM may have some advantages over FDM to simulate 3D nonlinear fields in
irregular geometries, for simple geometries in 1D and 2D, FDM is preferred because of its
lower computational cost. A study of nonlinear acoustic waves in homentropic perfect gas
was presented by Christov et al.6 They solved the unsteady nonlinear wave equation using
a Godunov-type finite difference scheme, which is second-order accurate in space and time.
They however, did not consider the effect of thermoviscous attenuation. A numerical model
for quasi-standing nonlinear standing waves in a viscous fluid, based on a second-order
Taylor expansion of the state equation was presented by Vanhille and Campos-Pozuelo.7

Their second-order accurate model is valid for any viscous fluid but for a limited range of
amplitudes. In a later work, they proposed a nonlinear equation based on conservation laws
(written in Lagrangian coordinates) and the isentropic state equation, and numerically
solved the equation using second-order accurate implicit finite difference scheme.8 They
did not impose any restriction on the nonlinearity level in the momentum equation but
they used a simplified form of continuity equation which is only valid for finite-amplitude
waves. Furthermore, they considered the fluid to be viscous but thermally nonconducting.
Bednař́ık and Červenka9 developed a model for finite-amplitude standing waves in acoustical
resonators of variable cross-section. Their model takes into account external driving force,
gas-dynamic nonlinearities, and thermoviscous dissipation. They solved the model numeri-
cally using central semi-discrete difference scheme developed by Kurganov and Tadmor.10

Later, they extended their method to nonlinear standing waves in two-dimensional acous-
tic resonators.11 Their model is second-order accurate in space and third-order accurate in
time. They however, did not present any details about their numerical scheme.

As the literature review indicates, the accuracy of all previously developed schemes
is of second-order in space and of second or third order in time. In this study, we have
presented the three-dimensional exact wave equation for acoustic standing waves of arbitrary
amplitude in a tube excited by a vibrating diaphragm and filled with a thermoviscous fluid.
The effect of both thermoviscous attenuation and wall absorbtion have been considered
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in this model. Next, we have presented a high-order numerical scheme for solving highly
nonlinear standing waves equation in one-dimension with no restriction on the nonlinearity
level and type of the fluid. The numerical scheme is fourth-order accurate in both time and
space. Up to the knowledge of the authors, this is the first fourth-order accurate scheme
reported for solving highly nonlinear standing waves.

2. High-Amplitude Nonlinear Wave Equation

The wave equation for the high-amplitude nonlinear acoustic waves in a viscous, heat-
conducting fluid is derived from the basic equations of fluid mechanics (continuity and
Navier–Stokes equations) along with the appropriate state equation,

ρt + ∇(ρv) = 0, (1)

ρ

(
∂v
∂t

+ (v.∇)v
)

= −∇p +
(

µB +
4
3
µ

)
∇(∇v), (2)

p′ = p0

(
ρ

ρ0

)γ

− κ

(
1
cV

− 1
cp

)
∇v, (3)

where v = (u, v,w) is the acoustic velocity vector, µ and µB are the shear and bulk viscosi-
ties, γ = cp/cV is the ratio of specific heats at constant pressure and constant volume, κ is
the coefficient of thermal conduction, and t is time.

It is now useful to introduce the sound speed c as

c2 =
dp′

dρ
. (4)

For very small perturbation (ρ′ → 0, p′ → 0), c becomes a constant, i.e. c0 =
√

γp0/ρ0,
which is called small-signal sound speed. Using Eqs. (3) and (4) we can express ρ and p′ in
terms of c as14

ρ = ρ0

(
c

c0

)2/(γ−1)

, (5)

p′ = p0

(
c

c0

)2γ/(γ−1)

. (6)

Now the continuity and Navier–Stokes equations can be written as

∂c

∂t
+ v∇c +

γ − 1
2

c∇v = 0, (7)

∂v
∂t

+ v∇v +
2

γ − 1
c∇c = νb

(
c

c0

)−2/(γ−1)

∇(∇v), (8)

where ν is the kinematic viscosity and b indicates the total effect of viscosity and thermal
conductivity of the fluid as well as the wall absorbtion, and can be obtained as

b =
2c3

0α

ω2ν
, (9)
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where ω = 2πf , f is the frequency of excitation, and α is the total absorbtion coefficient
which is the sum of thermoviscosity absorbtion coefficient and wall absorbtion coefficient.12

We write

α = αtv + αwall,

αtv =
ω2ν

2c3
0

(
4
3

+
µB

µ
+

γ − 1
Pr

)
, αwall =

√
ων

8c2
0

(
1 +

γ − 1√
Pr

)
℘

Λ
,

(10)

where Pr = µCp/κ is called the Prandtl number, Λ is the cross-sectional area, and ℘ is the
perimeter of the resonator.13

Equations (7) and (8) are the exact highly nonlinear wave equations in a thermoviscous
fluid. In one dimension they can be written as

ct + ucx +
γ − 1

2
cux = 0, (11)

ut + uux +
2

γ − 1
ccx = νb

(
c

c0

)−2/(γ−1)

uxx. (12)

Equations (11) and (12) may be combined in the conservative form as

U t + AUx = BUxx, (13)

where

U =
[

c

u

]
, A =


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u
γ − 1

2
c

2
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c u


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


0 0
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(
c
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
 .

This unsteady nonlinear equation must be solved using an appropriate numerical scheme.
The acoustic pressure p′, can be evaluated from c using Eq. (6).

The acoustical Reynolds number is defined as,

Re =
c0v0

bνω
, (14)

where v0 is the characteristic velocity of the medium, 1/ω is the characteristic time. Non-
linear acoustical theory must be used when the amplitude of the oscillations of the medium
is sufficiently large, so that Re ≥ 1.14

The fluid is assumed to be initially at rest which means particle displacement and velocity
at t = 0 are zero. The fluid is excited by the harmonic motion of a diaphragm at x = 0 at
the frequency f . Assuming L to be the length of the tube, the following initial and boundary
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conditions for the variables u and c are applicable:

u(0, t) = u0 sin(wt), u(L, t) = 0,

cx(0, t) = 0, cx(L, t) = 0, (15)

u(x, 0) = 0, c(x, 0) = c0.

Since the boundary condition for the density in a closed standing tube is ρx = 0 for x = 0, L,9

according to Eq. (5), the appropriate boundary condition for the variable c would be cx = 0
for x = 0, L. It must be noted that any time-dependent excitation function can be modeled
using appropriate boundary conditions.

3. Numerical Analysis

The mathematical formulation outlined in Sec. 2 is solved numerically using the fourth-order
compact finite difference method (CD4) in space and fourth-order Runge–Kutta time step-
ping scheme. Explicit finite difference schemes express the nodal derivatives as an explicit
weighted sum of the nodal values of the function, whereas implicit or compact schemes (also
called Padé schemes) equate a weighted sum of the nodal derivatives to a weighted sum of
the nodal values of the function. Using CD4 scheme, we can express the spatial derivatives
as u′

i+1 + 4u′
i + u′

i−1 = 3(ui+1 − ui−1)/h and u′′
i+1 + 10u′′

i + u′′
i−1 = 12(ui+1 − 2ui + ui−1)/h2

or as

(ux)i =
(

1 +
h2

6
δ2
x

)−1

δ0
xui + O(h4),

(uxx)i =
(

1 +
h2

12
δ2
x

)−1

δ2
xui + O(h4),

(16)

where δ0
xui = (ui+1 − ui−1)/2h, δ2

xui = (ui+1 − 2ui + ui−1)/h2, h = ∆x, and ui = u(xi).
With the same stencil width, compact schemes are more accurate than explicit ones.15

For the time evolution equation,

∂U
∂t

= F (U ), (17)

where

F (U ) = −AUx + BUxx, (18)

an explicit, p-stage Runge–Kutta scheme advances the solution from time level t = tn to
tn + τ as

U n+1 = U n +
p∑

i=1

ζiRi, (19)

where

R1 = τF (U n), Ri = τF (U n + σi−1Ri−1). (20)

For four-stage Runge–Kutta scheme, we have ζ = [1/6, 1/3, 1/3, 1/6] and σ = [1/2, 1/2, 1].
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3.1. Discretization of the nonlinear wave equation

Using Eqs. (16) and (18) we can write

(
1 +

h2

6
δ2
x

)(
1 +

h2

12
δ2
x

)
Fi = −Ai

(
1 +

h2

12
δ2
x

)
δ0
xUi + Bi

(
1 +

h2

6
δ2
x

)
δ2
xUi. (21)

Obviously, the stencil on the left-hand side of Eq. (21) is five-node and requires to solve the
system of equations with penta-diagonal coefficient matrix. The reason for the increased
stencil is that the denominators of the Padé approximation for Ux and Uxx (Eq. (16)) are
not equal. In order to obtain small-stencil with the same fourth-order accuracy, we follow
the approach of Lele15 and write

(uxx)i =
(

1 +
h2

6
δ2
x

)−1 (
1
3
δ̂2
x +

2
3
δ2
x

)
ui + O(h4), (22)

where δ̂2
xui = (ui+2 − 2ui + ui−2)/h2. Using Eq. (22), Eq. (18) can be discretized as

(
1 +

h2

6
δ2
x

)
Fi = −Aiδ

0
xUi +

1
3
Bi(δ̂2

x + 2δ2
x)Ui. (23)

This is a tridiagonal system which can be solved efficiently using fourth-order Runge–
Kutta time-stepping scheme. Since tridiagonal matrices can be inverted quite efficiently,
this method is very attractive and efficient. This invertibility also proves the solvability of
Eq. (23).

3.2. Stability analysis

The choice of the time step τ is an important issue in solving unsteady equations. One
criterion for the time step is that the time integration must be stable. Following Jameson
et al.16, the amplification factor of the four-step Runge–Kutta method is given as

ξ = 1 + Z +
Z2

2
+

Z3

6
+

Z4

24
, (24)

where Z is the Fourier symbol of the discretized F (U ) (Eq. (18)). Applying von Neumann
stability analysis method17 to Eq. (23) we can obtain

Z =
r(4 cos(β) + 2 cos(2β) − 6) − 3

√−1s sin(β)
cos(β) + 2

, (25)

where s = λAτ/h and r = λBτ/h2, λA and λB are the eigenvalues of matrices A and B which
can be obtained as λA = v ± c and λB = νb(c/c0)−2/(γ−1), β = 2πmh/L,m = 0, 1, . . . , N ,
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Fig. 1. The stability footprints of the given scheme for s = 0.1 (thick-solid); 0.5 (thin dash-dotted), 1.2
(thin dashed), and 1.25 (thin solid) and different values of r (a) r = 0.02, (b) r = 0.1, (c) r = 0.274, and
(d) r = 0.35; dot line is |ξ| = 1 circle.

and N is the number of nodes in the x-direction. Applying von Neumann stability method
to large-stencil scheme (Eq. (21)) will result in

Z =
12r(cos(2β) + 2 cos(β) − 3) − 15

√−1s(sin(2β) + 2 sin(β))
cos(2β) + 14 cos(β) + 21

. (26)

The magnitude of the amplification factor is related to the artificial dissipation. When
|ξ| ≥ 1, the method is unstable. For unsteady cases, we like |ξ| to be as close as possible to
unity to ensure stability with minimum artificial dissipation.

The stability footprints (imaginary part of ξ versus its real part) of the small-stencil
scheme (Eq. (23)) for different values of s and r are depicted in Fig. 1. The stability region
of the given scheme is: s ≤ 1.2 and r ≤ 0.274. Figure 1(a) shows that, to get |ξ| as close as
possible to unity, we need smaller values for s and r, which means that we must increase the
node numbers in both x and t directions. As seen in Figs. 1(a)–1(c), for s > 1.2 regardless
the value of r, the scheme is unstable. Figure 1(d) shows that for r > 0.35 regardless the
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value of s, the scheme is unstable. The stability footprint for the marginal values of s and
r (s = 1.2 and r = 0.274) is included in Fig. 1(c). The stability region of the large-stencil
scheme (Eq. (21)) is: s ≤ 1.345 and r ≤ 0.46.

4. Results and Discussion

Numerical calculations were performed using the small-stencil scheme (Eq. (23)) for two
thermoviscous gases, air and CO2 at 0◦C. For both cases, the cross-sectional area of the
resonator is set equal to 16 cm2, the excitation frequency is 1024 Hz, and the length of the
resonator is set equal to half of the wavelength of the acoustic standing wave, which is equal
to 16.2 cm for air and 12.6 cm for CO2. The values of physical parameters of these gases for
the given conditions are presented in Table 1. Also presented in Table 1 are the values of
the absorbtion coefficient and corresponding values of b, computed from Eqs. (9) and (10).
The values of µB/µ have been obtained from Pan et al.18

For numerical simulations, the spatial and temporal step sizes were set as h = 0.81 mm
and τ = 0.244µs, respectively, The corresponding values of s and r are 0.121 and 0.098,
respectively, which satisfy the stability condition with low artificial dissipation. One advan-
tage of the given numerical scheme is that no additional attenuation is required to get
numerical stability.

Figure 2 represents the variation of the pressure and particle velocity over one standing
wave period for air. Figure 2(a) shows that in the highly nonlinear standing wave case,
the pressure waveform distorts from the pure sinusoidal waveform which is observed in the
linear case. Figure 2(b) shows that nonlinearity significantly influences the particle velocity
profile. The particle velocity waveform is also deviated from the sinusoidal behavior. For the
linear case, the velocity profile is symmetric about the pressure node (i.e. at L/2). However,
for the highly nonlinear case, the plot shows a steep wavefront traveling along the resonator.

To get a better insight into the pressure and velocity dynamics of highly nonlinear waves,
the pressure waveform at x = L (i.e. pressure antinode) and particle velocity waveform at
x = L/2 (i.e. velocity antinode) are plotted in Figs. 3(a) and 3(b), respectively, for air
and CO2. The maximum velocity of the diaphragm for both cases is u0 = 10 (m/s) that

Table 1. Values of parameters for air and CO2 at 0◦C.

Air CO2

µ (kg/ms) 0.0000181 0.0000145
µB/µ 0.6 1000

ρ0 (kg/m3) 1.293 1.98
c0 (m/s) 331.6 258
γ 1.402 1.289
κ (J/Kms) 0.026 0.017
cp (J/kgK) 1005 846

α (m−1) 0.1196 0.0916
b 15050 10373
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Fig. 2. (a) Pressure and (b) particle velocity over a standing wave period for air. Maximum velocity of the
diaphragm is u0 = 10 (m/s).

corresponds to the acoustical Reynolds number (Eq. (14)) of 14.23 and 27.45 for air and
CO2, respectively. The plots show that the shape of pressure and velocity waveforms for
both gases are similar. However, for air, the pressure amplitude is lower and the particle
velocity amplitude is higher than that for CO2. This is due to the reason that the absorbtion
coefficient of CO2 for the given frequency and other conditions is less than that of air,
resulting in higher pressure amplitude.

Figure 3(a) also shows another important difference between the temporal pressure wave-
forms for air and CO2. The asymmetry of the pressure wave for CO2 is higher than that
for air. This phenomenon can be explained using the Re. Due to lower values of b and ν

for CO2 than those for air, Re is higher for CO2 than that for air. The higher value of Re

for CO2 means that the degree of nonlinearity is higher for CO2 than that for air. As the
degree of nonlinearity increases, more energy will transfer to distortion components of the
wave1,19. Table 2 shows the relative harmonic amplitudes (pn/p1;n = 0, 2, 3, 4) of the pres-
sure waveforms for air and CO2, where p1 is the amplitude of the fundamental frequency.
The relative amplitude of the dc component (p0) is higher for CO2 than that for air. The
higher dc pressure gives the upward shift in the pressure waveform and is responsible for
the higher asymmetry in the pressure wave for CO2.

To study the influence of nonlinearity on the pressure and particle velocity, the pressure
variations at x = L and particle velocity variations at x = L/2 from the center of the
diaphragm over two standing wave periods for u0 = 0.1, 0.5, 1, and 5 (m/s) are depicted in
Fig. 4 for air. The corresponding values of the acoustical Reynolds numbers for the given
cases are 1.04, 3.05, 4.4, 6.3 and 10.04. These cases cover a range from linear to highly non-
linear standing waves. Figure 4(a) shows that the shape of pressure waveform changes from
sinusoidal in the linear case to saw-tooth in the highly nonlinear case. The plot also shows
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(a) (b)

Fig. 3. (a) Pressure waveform at x = L and (b) particle velocity waveform at x = L/2 from the center of the
diaphragm over two standing wave periods for air (solid line) and CO2 (dashed line). Maximum velocity of
the diaphragm is u0 = 10 (m/s).

Table 2. Relative harmonic ampli-
tudes of the pressure waveforms
(pn/p1) for air and CO2.

Harmonic Air CO2

dc 0.56 0.67
2 0.36 0.40
3 0.24 0.26
4 0.17 0.19

that as the nonlinearity effect increases, the pressure waveform becomes asymmetric about
the static pressure, and the pressure peaks shift toward the pressure antinodes. The shift in
the pressure peaks is due to the increase in the amplitudes of second and higher harmonics
with nonlinearity. Figure 4(b) shows that as the nonlinearity increases, high velocity gra-
dients are observed around T/4 and 3T/4 and the waveform changes to near-rectangular
form. Similar waveforms for pressure and particle velocity are reported by Bednař́ık and
Červenka.9 However, for their simulations, the acoustical Reynolds number was around 4,
which is in the moderate nonlinearity range.

Figure 2 shows that nonlinearity influences the spatial waveforms of pressure and particle
velocity. To analyze this impact, the pressure and particle velocity waveforms along the
resonator are plotted for the highly nonlinear (u0 = 10 m/s) case in Figs. 5(a) and 5(b),
respectively. The waveforms in this figure are plotted with a time step of T/8, and cover
a total of half-wave period. The axial distribution of pressure shows that in the highly
nonlinear case, the pressure node is not fixed in time and space. That is, during a wave
period, the pressure node oscillates about the theoretical pressure node, whereas, in the
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Fig. 4. (a) Pressure waveforms at x = L and (b) particle velocity waveforms at x = L/2 from the center
of the diaphragm for air for u0 = 0.1 m/s (thick solid); u0 = 0.5 m/s (thin solid); u0 = 1.0 m/s (dashed);
u0 = 2.0 m/s (dash-dotted), and u0 = 5.0 m/s (dotted).
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(a)

(b)

Fig. 5. Axial distributions of the (a) pressure and (b) particle velocity for both air (thin) and CO2 (thick)
for u0 = 10 (m/s) at different times; t = 0, ◦; t = T/8 (dash-dotted); t = T/4 (dotted); t = 3T/8 (dashed),
and t = T/2 (solid).
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linear case a pressure node is present in the middle of the resonator that is fixed in time
and space. In case of particle velocity, the nodes are fixed at both ends of the resonator,
and the plots show that for the highly nonlinear case, the velocity peaks move across the
resonator with time, whereas they are almost fixed at the middle of the resonator in the
linear case. The plot in Fig. 5(b) also indicates the presence of an additional node inside
the resonator whose position changes with time. The plot also shows a wavefront with high
velocity gradient, which also correspond to the high pressure gradient. The ratio between
the positive and negative peaks of the wavefront changes with propagation. Such wavefront
is not observed in the linear case. Thus, it can be concluded that for highly nonlinear
standing waves, a wavefront with very high velocity and pressure gradients travels along
the resonator.

Figure 5 also shows the effect of the filled gas on the spacial pressure and particle velocity
waveforms. The slopes of the traveling velocity and pressure gradients are higher for CO2

than those for air. It means that the shock waves generated in the resonator are more intense
for CO2 compared to air, which is due to higher level of nonlinearity for CO2.

5. Conclusions

A set of two nonlinear equations for highly nonlinear standing waves in a thermoviscous
fluid is derived from the basic equations of fluid mechanics along with the appropriate state
equation. The set of equations is solved numerically using the combination of a fourth-order
compact finite difference scheme and a fourth-order Runge–Kutta time-stepping scheme.
The result is an accurate and fast-solver numerical model which can predict the pressure,
particle velocity, and density along the highly nonlinear standing wave resonator filled with
a thermoviscous fluid with no restriction on nonlinearity level and type of the fluid. As
it is well known, the results show that the pressure and particle velocity waveforms for
highly nonlinear waves are significantly different from that of the linear waves, in both time
and space. As the waves become highly nonlinear, the pressure waveform changes from
sinusoidal to saw-tooth form and the particle velocity waveform changes from sinusoidal to
near-rectangular form. For highly nonlinear waves, the results also indicate the presence of
a wavefront that travels along the resonator with very high pressure and velocity gradients.
The slopes of the traveling velocity and pressure gradients are higher for CO2 than those
for air. Another important observation is that the asymmetry in pressure waveform for CO2

is higher than that for air.
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